Tuesday, October 2, 2012

Evolutionary analysis improves ability to predict the spread of flu

Evolutionary analysis improves ability to predict the spread of flu [ Back to EurekAlert! ] Public release date: 1-Oct-2012
[ | E-mail | Share Share ]

Contact: Phyllis Edelman
pedelman@genetics-gsa.org
301-634-7302
Genetics Society of America

Research published in the journal Genetics may lead to more protective flu vaccines by helping developers more accurately predict strains most likely to strike the population in the coming season

BETHESDA, MD October 1, 2012 With flu season around the corner, getting a seasonal vaccine might be one of the best ways to prevent people from getting sick. These vaccines only work, however, if their developers have accurately predicted which strains of the virus are likely to be active in the coming season because vaccines must be developed in advance of the upcoming flu season. Recently, a team of scientists from Germany and the United Kingdom have improved the prediction methods used to determine which strains of the flu virus to include in the current season's vaccine. The research describing this advance is published in the October 2012 issue of GENETICS (http://www.genetics.org).

"Seasonal influenza kills about half a million people per year, but improved vaccines can curb this number," said Michael Lssig, Ph.D., a researcher involved in the work from the Institute for Theoretical Physics at the University of Cologne in Kln, Germany. "Although this study is some distance from direct applications, it is a necessary step toward improved prediction methods. We hope that it helps yield better vaccines against influenza," Lssig added.

To make this advance, scientists analyzed the DNA sequences of thousands of influenza strains isolated from patients worldwide, dating to 1968. By analyzing this dataset, researchers were able to determine which strains were most successful at expanding into the entire population, and which mutations were least successful in spreading. Using a new statistical method, the researchers found that many more mutations than we thought initially succeed in replicating and surviving. These mutations compete; some make it into the entire population, others die out. This analysis of the virus enables prediction of trends which can help vaccine developers understand the rules of flu virus evolution. This knowledge, in turn, can be used to predict which strains of the virus are most likely to spread through a human population.

"Every year, new concerns emerge about 'super flus' that have the potential to kill many people," said Mark Johnston, Editor-in-Chief of the journal GENETICS. "This research itself will not stop any people from getting sick, but it could give us a heads up to particularly dangerous strains that might be on the horizon. With that information, we may be able to develop increasingly effective vaccines."

###

FUNDING: This work was partially supported by the Wellcome Trust [080711/ Z/06] (N.S.) and by Deutsche Forschungsgemeinschaft grant SFB 680 (to M.L.). This work was also supported in part by the National Science Foundation under grant PHY05-51164 during a visit to the Kavli Institute of Theoretical Physics (University of California, Santa Barbara).

CITATION: Natalja Strelkowa and Michael Lssig Clonal Interference in the Evolution of Influenza Genetics October 2012 192:671-682

ABOUT GENETICS: Since 1916, GENETICS (http://www.genetics.org/) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. GENETICS, a peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most cited journals in genetics and heredity.

ABOUT GSA: Founded in 1931, the Genetics Society of America (GSA) is the professional membership organization for scientific researchers, educators, bioengineers, bioinformaticians and others interested in the field of genetics. Its nearly 5,000 members work to advance knowledge in the basic mechanisms of inheritance, from the molecular to the population level. The GSA is dedicated to promoting research in genetics and to facilitating communication among geneticists worldwide through its conferences, including the biennial conference on Model Organisms to Human Biology, an interdisciplinary meeting on current and cutting edge topics in genetics research, as well as annual and biennial meetings that focus on the genetics of particular organisms, including C. elegans, Drosophila, fungi, mice, yeast, and zebrafish. GSA publishes GENETICS, a leading journal in the field and an online, open-access journal, G3: Genes|Genomes|Genetics. For more information about GSA, please visit www.genetics-gsa.org. Also follow GSA on Facebook at facebook.com/GeneticsGSA and on Twitter @GeneticsGSA.



[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Evolutionary analysis improves ability to predict the spread of flu [ Back to EurekAlert! ] Public release date: 1-Oct-2012
[ | E-mail | Share Share ]

Contact: Phyllis Edelman
pedelman@genetics-gsa.org
301-634-7302
Genetics Society of America

Research published in the journal Genetics may lead to more protective flu vaccines by helping developers more accurately predict strains most likely to strike the population in the coming season

BETHESDA, MD October 1, 2012 With flu season around the corner, getting a seasonal vaccine might be one of the best ways to prevent people from getting sick. These vaccines only work, however, if their developers have accurately predicted which strains of the virus are likely to be active in the coming season because vaccines must be developed in advance of the upcoming flu season. Recently, a team of scientists from Germany and the United Kingdom have improved the prediction methods used to determine which strains of the flu virus to include in the current season's vaccine. The research describing this advance is published in the October 2012 issue of GENETICS (http://www.genetics.org).

"Seasonal influenza kills about half a million people per year, but improved vaccines can curb this number," said Michael Lssig, Ph.D., a researcher involved in the work from the Institute for Theoretical Physics at the University of Cologne in Kln, Germany. "Although this study is some distance from direct applications, it is a necessary step toward improved prediction methods. We hope that it helps yield better vaccines against influenza," Lssig added.

To make this advance, scientists analyzed the DNA sequences of thousands of influenza strains isolated from patients worldwide, dating to 1968. By analyzing this dataset, researchers were able to determine which strains were most successful at expanding into the entire population, and which mutations were least successful in spreading. Using a new statistical method, the researchers found that many more mutations than we thought initially succeed in replicating and surviving. These mutations compete; some make it into the entire population, others die out. This analysis of the virus enables prediction of trends which can help vaccine developers understand the rules of flu virus evolution. This knowledge, in turn, can be used to predict which strains of the virus are most likely to spread through a human population.

"Every year, new concerns emerge about 'super flus' that have the potential to kill many people," said Mark Johnston, Editor-in-Chief of the journal GENETICS. "This research itself will not stop any people from getting sick, but it could give us a heads up to particularly dangerous strains that might be on the horizon. With that information, we may be able to develop increasingly effective vaccines."

###

FUNDING: This work was partially supported by the Wellcome Trust [080711/ Z/06] (N.S.) and by Deutsche Forschungsgemeinschaft grant SFB 680 (to M.L.). This work was also supported in part by the National Science Foundation under grant PHY05-51164 during a visit to the Kavli Institute of Theoretical Physics (University of California, Santa Barbara).

CITATION: Natalja Strelkowa and Michael Lssig Clonal Interference in the Evolution of Influenza Genetics October 2012 192:671-682

ABOUT GENETICS: Since 1916, GENETICS (http://www.genetics.org/) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. GENETICS, a peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most cited journals in genetics and heredity.

ABOUT GSA: Founded in 1931, the Genetics Society of America (GSA) is the professional membership organization for scientific researchers, educators, bioengineers, bioinformaticians and others interested in the field of genetics. Its nearly 5,000 members work to advance knowledge in the basic mechanisms of inheritance, from the molecular to the population level. The GSA is dedicated to promoting research in genetics and to facilitating communication among geneticists worldwide through its conferences, including the biennial conference on Model Organisms to Human Biology, an interdisciplinary meeting on current and cutting edge topics in genetics research, as well as annual and biennial meetings that focus on the genetics of particular organisms, including C. elegans, Drosophila, fungi, mice, yeast, and zebrafish. GSA publishes GENETICS, a leading journal in the field and an online, open-access journal, G3: Genes|Genomes|Genetics. For more information about GSA, please visit www.genetics-gsa.org. Also follow GSA on Facebook at facebook.com/GeneticsGSA and on Twitter @GeneticsGSA.



[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Source: http://www.eurekalert.org/pub_releases/2012-10/gsoa-eai092712.php

steelers Closing Ceremony London 2012 Tom Daley Leryn Franco The Campaign Kinesio tape NBA

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.